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Abstract —Granular malerial, perceived as a collection of particles. is modelled as a micropolar
continuum taking account of the discreteness and microstructure of the material. The new feature
of the proposed model is that the constitutive coetficients are derived in explicit terms of grain
contact properties. In addition, the constitutive law, the equilibrium equations and the compatibility
equations for granular material are derived to completely define a boundary value problem. Using
the derived constitutive law and field equations, a procedure based on finite element analysis is
deseribed to obtain approximated solutions for boundary value problems. An example is shown for
a granular packing under boundary pressure. Solutions of the example are compared with that
obtained from the discrete element method to show the applicability of this method. Based on this
model, the effeets of particle rotation and couple stress on the deformation behavior of granular
material are wlso studied.

[. INTRODUCTION

The mechanics of materials with rotations of the microbody is an old subject which can be
dated back to Voigt (1887) and Cosserat and Cosserat (1968). More recently, considerable
attention has been paid to the development of micropolar theories, for example, by Green
(1963), Eringen (1968), Mindlin (1965), Nowacki (1986), Toupin (1964), cte. The theory
of micropolar medium has been used to investigate the mechanical response of material in
many arcas such as the stress concentration around holes (Mindlin, 1962 ; Sternberg,
1968), the dynamics of composite materials (Herrmann and Achenbach, 1967) and wave
propagation in half space (Ariman, 1972).

Although no experimental evidence has been found to reveal that the effect of micro-
rotation is signiticant in metal, the theory does yield interesting phenomena and it has
been suggested by several authors that the micropolar theory may be more applicable to
granular material (Toupin, 1964 ; Eringen, 1968 ; Nowacki, 1986). In connection with the
application of micropolar theory to the modelling of granular media, the micropolar theory
has been found to be uscful in the study of shear band thickness in bifurcation problem of
granular material (Muhlhaus, 1989 ; Muhlhaus and Vardoulakis, 1987 ; Besdo, 1985).

However, in the above-mentioned studies, no consideration is given to account for the
microscopic properties in the description of the constitutive behavior of the material. In
view of the discrete nature of granular media, the primary mechanism of deformation and
load carrying is the interactions at contacts between particles. Therefore it is desirable to
have a theory that includes the micro measures. It is in need of, in the mathematical analysis,
a transformation process through which the discrete system can be conceptually viewed as
an equivalent continuum system,

This point of view has been paid very little attention in the study of material with
microbody rotation. Work by Kanatani (1979) has been devoted to a continuum rep-
resentation for granular flow where granular material is considered to be essentially liquid
material. For the continuum representation of granular solids under a static equilibrium
condition, cfforts have been made to include the effect of particle interactions and grain
contact propertics (Chang and Liao, 1990).

In this paper, a model extended from the previous work (Chang, 1987; Chang and
Liao. 1990) is proposcd to represent the discrete granular matenial as equivalent continua.
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In this model. we treat particle translation and particle rotation as two independent con-
tinuum fields based on the approach used in previous analyses. This leads to a generalized
strain measure for the granular material that consists of both the deformation strain
resulting from particle translations and the polar strain resulting from particle rotations.
Corresponding to the strain measure. the stress measure consists of both Cauchy stress and
polar stress.

Different from previous work (Chang and Liao. 1990). this current model defines stress
and strain in reference to a particle point rather than an element comprising a large number
of particles. The advantage of defining stress and strain at a particle point is that, for the
small region containing this particle and its surrounding particles. the displacement and
rotation fields can reasonably be assumed affine (i.e. homogeneous). This assumption avoids
the use of complex higher-order kinematic fields such as that used in the previous model.

Another advantage is that, by defining stress and strain at a particle point. equilibrium
equations can be expressed in a simple differential form instead of a complicated integral
form corresponding to the higher-order kinematic field used in the previous study. The
simpler form enables one to derive the constitutive law and field equations with explicit
expressions of microscopic properties. Thus a boundary value problem for granular material
is completely defined.

Using the derived constitutive law and field equations, @ procedure based on finite
element analysis is used to solve boundary value problems. An example is shown for a
granular packing under boundary pressures. Results of the example are compared with that
obtained from the discrete clement method to show the applicability of this method. A
discussion s given on the deformation behavior in relation to particle rotation and couple
stress.

The modelin this paper, for simplicity. is limited to the conditions of clastic interactions
between particles. No separation, shding and rearrangement between particles are allowed.
The model, although under idealized elastic conditions, demonstrates that the constitutive
parameters can be rationally derived based on microscopic propertics. It also shows that
particle rotation and couple stress play significant roles in the overall deformation behavior
of granular material.

2 CONTINUUM MODELING OF DISCRETE GRANULAR MATERIAL

2.0 Mechanics of interactions between particles

For materials such as soil and ceramic at ordinary temperatures, granules are relatively
rigid and the deformition of granules occurs mostly at contacts. Therefore we envisage a
simple conceptual model in which the constituent particles are treated as rigid bodies. The
pitrticle motion consists of a translation and a rotation about the particle center. The pair
of particles in contact are viewed to be connected at contuct points by imaginary springs.
In general, these springs are elasto-plastic: the elastic portion of the spring deformation
represents a particle distortion while the plastic portion of the spring deformation represents
a yielding at contacts between the particles. In this paper, for simplicity, only the elastic
springs are considered.

To represent the contact resistance, two types of springs are used, namely the rotation
springs and the stretch springs. The rotation springs, transmitting contact moments, rep-
resent the contact resistance to the relative rotation of two particles. The stretch springs,
transmitting contact forces, represent the contact resistance to the relative translation of
two particles.

The local kinematics of two particles in contact is schematically shown in Fig. 1. When
the assembly deforms, particles undergo translations and rotations which result in the
straining of springs at contacts. For example, as shown in Fig. 1, the translation and
rotation arc denoted as u, and «, for a particle which is in contact with several particles.
The movements of particle ¢ in contact with this particle are denoted by «f and o). The
angular straining, (¢, of the rotation spring at contact point C is caused by the relutive
rotation of the two contact particles,
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Fig. 1. Schematic illustration of particle interaction.

F=w-w, (1)

The straining of the streteh springs, 87, is caused by the relative displacement at the contact
point ¢ of the two particles, expressed as:

O = (1 — 1)+ Z i (Sri —w,r,) )

where r and r5, as shown in Fig. |, are the vectors joining respectively the centroid of the
reference particle and the centroid of the neighbor particle to the contact point. The quantity
=, is the permutation symbol used in the tensor representation for the cross product of
vectors,

The behavior of the springs at the contact point connecting two particles can be
described by the relationships between the contact rotation, dt¥, and the contact moment,
dmt, e,

dm; = g, d0; (3)
and between the contact deformation, dd, and the contact force, d /¥, i.e.
dfi = ki, do; )
where ¢f, is the stiffness tensor of the rotation spring, and A is the stiffness tensor of the
stretch spring.
Let g;. ¢i and ¢¢ be the rotational stiffness constants in the directions of the local
coordinates n, s and ¢, respectively. The local coordinate system is constructed for each

contact with three orthogonal base unit vectors; the vector n is normal to, and the vectors
s and t are tangential to, the contact area. Thus

g5 = ganin; +gisis; +gii e (5)

Similarly. &, can be given by
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K = ki + Kisis + K0 (6)

where k. &} and A} are the spring constants in the directions of local coordinate system n.
s and ¢, respectively.
Equations (3) and (4) can be combined into a compact form as follows:

dF} =K )d{D}} (7

where {D;} is the generalized contact-displacement vector. { F7] is the generalized contact-
force vector and [K{,] is the generalized stiffness tensor. defined in the following:

i npel (5‘\ . L A} /‘L . S k:; 0 >
le)’= & . (F7|'= e . [I\:/]= 0 (IIL-;- . (8)

2.2, Generalized strain tensor in a granular solid

Let the centroid of a particle be denoted as a particle point. A granular material can
thus be represented by a set of discrete particle points and the translations and rotations
are discrete variables. However, when we deal with a small volume consisting of a large
number of particles, these particle points can be conceptually viewed as continuous in
the macroscopic scale. Thus the displacements and rotations can be represented by two
independent continuum ficlds. In these continuum fields, at the neighborhood of a particle
point, we assume the usual “affine™ (or homogencous) deformation. The displacement o)
and rotation ¢ at the adjacent particle point C (as in Fig. 1) can be expressed as:

W= +u,,l 9)

I (10)

w) = +w,,l

where /¢ is the branch vector joining the particle point and its adjacent particle point C,
and u,; and o, are the derivatives of the displacement and the rotation, respectively.

Substituting eqns (9) and (10) into egns (1) and (2), the relative angular rotation, 05,
and the deformation of the stretch-springs, 0¢, can be expressed by the derivative quantities
w,, and u, ;, given by

U =w,,l (11)

O = (1, —Zuw ) +Z, i (12)

Observing the expressions of eqns (1) and (12) we introduce, similur to the form used

in theory of micropolar medium, the asymmetric deformation strain &, and the polar strain
. it the particle point

=, —Z,.0x (13)

7,/=U),'./- (|4)

The symmetrical part of ¢, is equal to the symmetrical part of the displacement gradicnt.

Eyo = Uy = .%(",‘,; +ll,,/) (15)

representing the stretch strain. The skew-symmetric part of ¢, is given by
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Euit = Uy +E,,,,.w,,, (16)
where the skew-symmetric part of the displacement gradient u;,; = }(u,, —u,,) representing

the rigid body rotation. The angular rotation v, corresponding to the rigid body rotation
is

Ejlmd,m = —u[_/.il' (17)
Thus the skew-symmetric part of ¢, becomes
s[Jl] = E]mv(wm - lpm) ( IS)

which represents the net particle spin (i.e. the difference between the particle rotation and
the rigid body rotation of the material).

Combining tensor and matrix notation, the above equations can be written in a
compact form as follows:

{E.} = [V,ul{Us} (19)

2 —_
£ i €04 =ik
v =0 u = V.= . 20
e {7."} (Ui {u)k} Vil [ 0 0,04 ] =0

where ¢, = ¢/dx, and 8, is the Kronecker delta, {£,,} represents the gencralized strain
tensor, {U,} is the generalized displacement vector and [V, ] is the gradient operator. The
summation convention of indices is followed in accordance with the tensor notation.

We further express the relative movement of a pair of contact particles [eqns (11),
(12)] in terms of the gencralized strain tensor {£,} as follows:

where

{07} = (LI Ex} (1)

where { L7}, the same as that in eqn (8), is the generalized relative movement vector at the
contact, and [L;,] is the fabric operator, given by

d.klj Efulj"f o
¢ = : €l = ! 29
[Ll/k] [ 0 5”‘1;: ’ {D‘ ] ()’L . (..,...)

2.3. Stresses in a granular ussembly

Corresponding to the strain tensor defined in eqn (19), the stress tensor in the granular
assembly can be defined by using the principle of energy equivalence. in a granular assembly,
the energy at a contact ¢ of two particles due to an increment of load can be expressed as:

dWe = {F}7 d{Ds). (23)

Assuming the energy at this contact is equally shared by the two contact particles, the
total energy shared by particle “a™ is the cnergy summed over all contacts with its sur-
rounding particles, given by

dw* = _Y dw~., (24)

(3 2

The energy thus defined is discrete quantities for each particle. In a continuum system,
it s desirable to definc the energy as a quantity, in the units of energy per volume,
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continuously distributed in the material. Let }'* be the volume associated with particle "*a™
which includes the volume of the solid particle ¢, and its associated voids. It is convenient
to express the particle volume ¥ in terms of the porosity n of the assembly by

V4 =1"/n (25)

where the porosity n is the ratio of the total volume of the assembly to the total volume of
solid particles within the assembly, given by

n=Z%. (26)

This satisfies the requirement that the total volume of the assembly is the sum of all particle
volumes, i.e.

=Y v

'

We assume the energy for particle “a”, dW?*, is equally distributed in the volume
associated with the particle, V*. Thus the energy per volume d W in the volume associated
with particle "a™ is given by

d l’V‘l

W=
d V-

l .
= 2V.|,¥dw , 27

For small strain condition, by substituting eqn (21) into (23). dW* can be expressed
in terms of strain d{ £} as follows:

l e .
A = {QVA.Z -:P,:-'[L:,kl}d{ﬁ,k:-. (28)

Iy

For a micropoluar medium, the energy per volume can also be expressed in terms of
stress and strain, i.e.

dW = {S, Y dE,} (29)

where {S,;} is the generalized stress tensor, given by

(S} = ”} 30
e } {#/’k (30)

in which g, is the Cauchy stress tensor and g, the polar stress tensor referred to a particle
point.

Comparing eqns (28) and (29), one can define the generalized stress tensor of the
granular medium in terms of generalized forces vector and fabric tensor operator ; it follows
that

) R
{Slkf - 20

YILLT{FL (30

Equation (31) can be expanded into two equations corresponding to Cauchy stress and
couple stress as
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|
o =53 L1 (32)

o = ,V.. Zl‘(mk +ZWr SO, (33)

The derived Cauchy stress in eqn (32). in terms of contact forces, has a form similar
to that proposed by Christoffersen er al. (1981). Equation (33) defines couple stress in terms
of contact forces, contact couples and microstructural measures /5 and rj. Equation (33)
reveals that the couple stress may be transmitted across a grain contact solely by contact
forces. Therefore the couple stress, contrary to common preconception. can exist in a
packing of particles in the absence of force couples on the contacts. such as in a packing
of rigid smooth spheres which have no rotational resistance at contacts.

2.4. Constitutive law of granular medium

According to eqn (31). the incremental form of the stress tensor can be written as
follows:

l/[ QV[/TZ[L u]]T d‘ﬂn (34)

Substituting eqns (7) and (21) into (34), the constitutive law in an incremental form can be
established to describe the relationships between stress and strain, given by

diS, ) = [AuldiE} (35)

where [A, 4] is the constitutive cocetflicient tensor, given by

|
’z[l‘mu] [Knm][L:k/ . (36)

[Al;k/] = :’VJ

Expressed in detailed form, eqn (35) becomes

dO’,/} [al/kI hv/l(l} {d“ll}
= 37
{d“u hkh/ “:/I(I d‘l’k/ ( )

where a4, bix and ¢, i, are the constitutive coefficients of eqn (36). given by

At = :)VJZ[CK"/IL (38)
l - CRC 8
bl/kl = ZV;LZ:IInnITI\/n/k"m (39)
1 e
Cl/kl = ZFZ[: Z( /I+—';m/—'lmp am r ) (40)

Observing from eqns (38) and (40), it is noted that a, ., and ¢, ., have the following properties :

al,kl = akh[ , C:/kl = Ckh/' (41)

The constitutive coefficients are functions of the microstructure at a particle point.

SAS 28:1-r
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According to eqn (39). it can be seen that b,,, = 0 when the microstructure is center-
symmetric. Under a center-symmetric condition, the constitutive equations are decoupled
as follows:

dO',, = a,/k/ dﬁu; (42)
d;{u = ('”“ df;“. {43)

When the couple stress tensor g, and the polar strain y,, are neglected. the constitutive
equation reduces to the usual form for a non-polar medium.

Based on eqn (40), the coefficients ¢, are contributed to by two sources: K,,.r,r,
related to stretch springs and G, related to rotation springs. The former is a function of
particle size. Therefore, for packings with small size particles, the contribution of the stretch
springs to the coefficient ¢, is relatively insignificant compared to that of the rotational
springs.

2.5. Equilibrium equations

In this section. the governing equations are derived for a granular assembly in static

equilibrium subjected to an external traction (7)) on the boundary surface of the assembly.

Bused on the principle of virtual work, the work done by the external traction is equal to
the work done by the internal stresses, Therefore, one can write

f SIE TS, dV = f SLULTIT, ) ds. (44)
[ N

Replacing the term J{E,,} on the left-hand side of eqn (44) by the gradients 8([V,,J{U})

"3
and using the Gauss theorem, it follows that

j (S{U/}‘.{S,,}", dS—J ‘S{U/}‘[V:/k]‘ {Snk ; dV = J\ (S:Ul}! {'[VI } ds. (45)
5 b

5

Equation (45) 1s arranged into the following expression:

j UV Sk })dV—&-f SUMUT, —n S, 1) dS = 0. (46)
1 A

A

Since the choice of 3{U,} and the choice of ¥ und § in cqgn (46) are arbitrary, the
following equation must hold:

Vsl {Su} = 0. 47

Equation (47) can be expanded into two equilibrium equations, given by
da,, = 0. (48)
Aty =2, 04 = 0. (49)

For the same reason, in eqn (46), the choice of §{U,} and the choice of ¥ and § are
arbitrary. On the boundary surface, it must satis{y the following two boundary conditions:

{ /}_’"'{Su} =0 or { 1}' = {Ol} (i.c. 5{0;} =0). (50)

The general displacement vector {U,} consists of six variables. However, the functions
{E,} in eqn (19) represent 18 differential equations. The functions {E,;} therefore cannot
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be arbitrary and must be subject to certain restrictions which are called conditions of
geometric compatibility. The conditions of geometric compatibility for { £, } are derived to
be

Em;! {lek) {El'k : = -"!If[vpk}[vlkn} ’H = 0‘ (5 l )
The above equation can also be expressed as follows:

Vil (B} — [Vl Ex) = 0. (52)

3. SOLUTION BY MICROSTRUCTURAL FINITE ELEMENT METHOD

We next describe a method of solution for boundary value problems of granular
material based on the continuum model discussed in the previous section. The method of
solution. although utilizing similar techniques. is different from the conventional finite
element method. The distinct difference is in the derivation of the stiffness matrix by
considering the microstructural properties of the material. The method of solution, here-
inafter, is referred to as the microstructural finite element method (MFEM).

In this method, each clement consists of several nodal points which may be located on
either the boundary or within the domain. Let {U7} be the gencralized displacement vector
of the nodal point p”. The dtxphxu.mcnt,frot.ttmn at any point {x,, x,, x,;) in the clement
can be expressed by dn interpolation function 47(xv,, v . x,) and the displacement {UT} of
the nodal points; that is,

N
(U v xnx)) = Y @ (v xnx ) U7 (53)

p=t

where N is the total number of nodal points, The coeflicient O7{x, x,, x,) is regarded as
the weighting of nodal point “p™ to point {x,,x,,x,) in the element and it s usually
constructed as polynomials.

Applying the principle of minimum potential energy on an element of the granular
medium, we have

5n=o=f5:£,,}* ,,}d&-”J- LULTT LS. (54)
i A

Substituting eqns (19) and (53) into eqn (54) to express 1 E,,} and d{U,} in terms of nodal
displacements 8{U”}, eqn (54) becomes

N
sM=0=Y awg}f(f {v,,k}‘*'uv'{s,,}dv-f {7 dS). (55)
¥ 5

peat

Since the variation §{U%} in eqn (55) is arbitrary, the following equation must hold :
J; [Vl {S, } dV ~ J. & {T,}dS =0. (56)

Note that p = 1,..., N. Equation (56) represents a set of ¥ simultancous equations, N
being the total number of nodal points of an element. Furthermore, by expressing the stress
tensor {S,,} in terms of nodal displacement and writing the equation in an abbreviated
matrix form, eqn (56) becomes
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Al

Y [Cmlity) = (D7) (57)
wherep=1,..... V. and eqn (57) represents a set of .V simultaneous equations. The sum-

mation convention for subscripts in tensor notation is followed. [C7¢] is the element stiffness
matrix, and {D] is a vector including nodal force and nodal couples, given by

[Cp] = J Vi) "O (A, ] [V J O d I (58)
.
(DL} =fW{fk}dS. (59)
5

The integral given in eqn (58) over the volume of the assembly V" can be carried over
each particle. Since each particle is small, the integral over the particle volume can be
approximated by multiplying the integrand value at the centroid of the particle by the
volume associated with the particle. After the element stiffness matrix is established. bound-
ary value problems can be solved using the usual finite element procedure.

The solution thus obtained gives a displacement ficld in accordance with the values of
nodal displacement and the assumed interpolation function. Therefore the solution does
not guarantee cquilibrium of cach particle. However, the solution meets the requirement
of minimum potential energy for cach clement.

4. EXAMPLES OF TWO-DIMENSIONAL GRANULAR MATERIAL PACKINGS

Deformation behavior of a disk packing under external load is illustrated here to show
applicability of the proposed theory. The structure of the random packing of circular disks,
shown in Fig. 2, is obtained by digitizing a photograph of an assembly of aluminum rods
randomly placed in i box of 7 in. (17.8 ¢cmy) by 8.1 in. (20.6 ¢cm). The radius of each rod
is 0.25 in. (0.64 ¢m) with the total number of rods being 276 and the total number of
contacts 695, The clastic spring constants at the contacts between disks are assumed to be
as follows: A =1000Ibin. ' (885 KN m '); A* =400 1bin. ' (3.54 kN m '); and
G, =1001bin. ' (0.89 kN m ').

Fig. 2. Structure of packing used in the example.
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1.33in u.io
Uys0
75 psi W &0

u =0 u =0
uy*0 uys0
m‘:O Wz a0

Fig. 3. Boundary condition of a granular medium subjected to surface loading.

The example shown in Fig. 3 represents a pressure load on a boundary surface. Because
a symmetrical condition is assumed, Fig. 3 reveals only half of the picture on the right of
the center line. The pressurc is 75 Ibin. ' (0.66 kN m ') loaded on a length of 1.33 in,
(3.38 cm) on the surface. At the base, the displacements are specified to be zero in both
directions. The displacements on the center line and on the side line are specified to be zero
in the horizontal direction. All boundary points are free to rotate except for the points on
the center line. The boundary conditions are shown schematically in Fig. 3.

Figure 4 is a finite clement mesh to model the boundary vilue problem described in
Fig. 3. The total area is divided into four elements. Each element is made of 16 nodal points,
Since the geometric arrangement of particles that comprises cach element is known and the
propertics of the grain contact are given, the clement stiffness matrix can be computed
based on egqn (58). as described in the previous section on the microstructural finite clement
method.

The clement stiffness matrix for each clement is then assembled into a global stitfness
matrix. With the specified boundary condition, a set of simultancous equations is formulated
and solved for the displacements and rotations for all the nodal points. The solved nodal
displacements and nodal rotations arc used to obtain the movement of each particle using
the interpolation function defined in egn (53). Bused on the movements of all particles,
contact forces and contact couples are determined using eqns (1), (2) and (7). From the
contuct forces and contact couples, the stress for each particle point can be caleulated using
the definition of stress in eqn (31).

Fig. 4. Finite clement mesh for the example.



(RAA) POYISIN WIWDT 212208 PUT (NF 4 IN)
POUIDIA JUDLIANTY 3L DIMONIISOIINA WO PAMGO sPdY awddeidsip jo uosundwo) ¢ Jig

uT 6270 - : 9TedS /I\

Waa (q)
- - . - - - - . .
- - - » - - . . .
- - - A - - - * - » Al L]
“ - » [N . - » . [} . L} 'Y
- - - . . - » A L % [Y
« . e . . LY L] ] X 'S

. - - . - - - - . -
-~ - . - - - - - - -
- - . - » » - - » [y . - * *
. . L . - . * L] L]
* * . ]
. . . . [ [ L} »
NN e 0

VIN N1 PUR ONVHD) 'S DNIHD)

8L



6L

(N3Q) POz WYY 2181 pue (NIIW)
PONIRI JUAWATF L] SIMONNSOINA WOL PAUITIQO SPPPY UONTIod Jo uosundwio) -9 "Riyg

PRI GD'0 + ¢ OTEOS T

o — S . —— e o —— .
- —
ee— hand — — O s YT iy W Y o—
- —
— . o, e SRR T e — .
lllll"tll — —
—
- g G A s S —— A—
W e g — —_
—"
E;lll\l‘i“‘l‘ -
— — — R T e T e B e -
e —
— —-— — P e e e T e g g
— w—-—" —
——— wo— — g g g g e pe—
o — —
— —— — — P - -
~— . — p—
— T e Y g TN e P —
 l -
_— —
— =TT e o e .
Lot —
— f < o —
—
-
—
. r n'? —

-~ TrTTTog e

el ol o o i
N e Sm— g W — g Y S e gy, e S e e
—
—— — — o — — O e, o e T e e e
- -
— — oy oy W T e e e —
— —
— e, TR W GRS emes M e smee ———
A —— ——
— —
o
!trll:iii“.ll::lillnl)l;i‘l'ltl _
—
T e e o—
— —
— T T e T e N e —
o _—
— P T T R T e Y o e —
- ————
b [ —_— — - WY e g e g g
L Loannd ——
- —
— - — — p— O g g N —
——
— —
— — T g T pn e e o~ —
—— o A———
. — o— — _ ——
— PO g g g— e —_
— p— 1!!.
e
—— e —
b ————— e _
e o
—_— — g~ T g ~
- g
— — - e e
ﬂlﬂ'ﬁ'ﬂ'»}!nlﬂl. -
}nl.l— —
e — T o U
o

e e g— g

spros 1enurid 10) K10341 Jrjodoidty



X CHING S, CHaNG and Lun Ma

The above-mentioned computation procedure is carried out for the example problem.
The computed displacement and rotation for each particle are plotted in Figs 5 and 6. Since
the MFEM method is a continuum model. it is interesting to compare the results of MFEM
with that obtained from computer simulation methods using entirely discrete models. Thus,
the same example problem is also analyzed using the discrete element method (Chang and
Misra. 1989). bused on an earlier work by Serrano and Rodriguez-Ortiz (1973). The discrete
element method (DEM) gives an exact solution because equilibrium is satisfied for each
particle.

From the comparison shown in Figs 5 and 6. close agreement is found in the movement
patterns for both particle displacements and particle rotations. However, a slightly larger
magnitude is depicted for the results of DEM. For example. the settlement computed from
DEM 15 0.278 in. compared with 0.263 in. from MFEM.

The discrepancy is expected because DEM allows more degree of freedom since it
solves a large set of simultaneous equations of the size of 3V x 3V, .V being the total number
of particles. On the other hand. the MFEM imposes constraints due to the discretization
and it solves a smaller system of equations (3.3 x 33, M being the number of nodal points).
This trade-off permits the MFEM to be a more efficient method for solving problems with
a large number of particles.

In order to evaluate the effects of particle rotation and couple stress on the deformation
behavior, we solve the example problem using MFEM method under two different
conditions. The nodal rotations and the nodal couples are included in the first condition,
whilst they are neglected in the second condition.

Diflerences in the computed displacement ticlds for the two conditions are reflected in
Fig. 7. For the first case, where particle rotatton is considered, particles near the surface
move towards the center line and particles at depth move away from the center line. For
the second case, where particle rotation is not considered, the results show that all particles
have negligible horizontal movements. [n general, the solution, allowing particle rotation,
tends to give larger magnitudes of particle movements. For example, the settlements at the
center line under the pressure load are 0.263 and 0.227 in., respectively, for the first and
second cases.

Although the vertical stress for particles, compared in Fig. 8, shows very close agree-
ment between the results for both cases, a large discrepancy can be noted from the com-
parison ol horizontal stress for particles shown in Fig. 9. Considering particle rotation and
couple stress, the pressure load trunsmitted into the granular region diagonally causes
compressive horizontal stress. In the region at some distance under the pressure load, the
material experiences tensile horizontal stress, These phenomena are not found in the results
for the case where particle rotation is not considered.

A large discrepancy is also found in the shear stress tor particles from the comparison
shown in Fig. 10. The pressure load caused more shear stress in the granular material due
to the effect of particle rotation and the presence of couple stress. The distribution of couple
stress computed is plotted in Fig. 11, Note that the large couple stresses are observed in the
region adjacent to the pressure loading. This 1s inconsistent with the presence of a rotation
gradient in this region, as previously shown in Fig. 6.

Based on the comparison of this example, particle rotation and couple stress have
considerable effects on the overall deformation behavior of the assembly. It can be expected
that such an cffect should depend on the boundary value problem and the loading condition.
In general, the couple stress plays a more important role when larger rotation gradients
exist in the material.

5. SUMMARY AND CONCLUSIONS

Granular material, perceived as a collection of particles, is modelled as a macro-
continuum taking account of the structural microdiscreteness of the material. In the model
proposed, we treat particle translation and particle rotation as two independent continuum
ficlds which lead accordingly to the definitions of stretch strain and polar strain of the
material. Corresponding to these strains, we derive the relationships among contact forces,
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Frg. & Comparison of vertical stress ficlds with and without consideration of particle rotation using
Microstructure Finite Element Method (MFEM).

contact moments, Cauchy stress and couple stress. Based on the particle interaction and
griain contact propertics, the stress-strain relationship for granular packing is established.
A brief summary of the discrete variables and their analoguc is given in Table 1.

The new feature of the present model, compared to the previous micropolar theorics,
is that the constitutive coetlicients are expressed explicitly in terms of properties of grain
contacts. This feature is particularly useful in the understanding of the constitutive
coefficients associated with the couple stress. since these coefficients are difficult to measure
experimentally in the laboratory tests from the gross behavior of a4 material sample.
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Fig. 9. Compurison of horizontal stress ficlds with and without consideration of particle rotation
using Microstructure Finite Element Method (MFEM).

We have also presented a microstructural finite element procedure for the solution of
boundary value problems. The results obtained from the example of a granular assembly
under boundary pressure load have demonstrated the applicability of the proposed model.

Bused on eqn (40). the ability of the couple stress to transmit through contact forces
increases with particle size. Therefore, the couple stress is mostly transmitted through
contact forces for materials made of larger size particles such as coarse sand and gravel.
For materials made of small size particles, the couple stress is primarily transmitted through
contact couples due to the rotational resistance of the contacts of the material such as

cemented sand or silt.
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Fig. [0. Comparison of shear stress fields with and without consideration of particle rotation using
Microstructure Finite Element Mcthod (MFEM).

The effect of the couple stress on the deformation behavior of an assembly depends
largely on the boundary and loading conditions. The couple stress has a significant effect
on materials with large rotation gradients. On the other hand, the couple stress is negligible
for conditions with small rotation gradients such as in the case of laboratory compression
loading tests. For the example presented in this study, the effect of particle rotation and
couple stress is significant on the overall deformation behavior of granular materials.
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Discrete viariables

s o FEVE
Force (£
Movement (U]

Rel. movement [ D)}
Constitutive egn
W =KD

Equilibrium eyn
Lk =10

85

Table 1. Summary of discrete vartables, the continuum analogues, and their relationships in granular material

Equivalent continuum
variables Relationship

Contact foree {f7}
Contact moment |m,}
Translation (o}
Rotation {w}

Rel. displ. {d¢}

Rel. rotation [}

Stress {8} Cauchy stress [} { ) )
Polar stress {u,,} WSyt = ?TPEIL'I!III{F‘&}

Strain {£,,} Stretch strain {&,} (£} = [V.. 1V}

Polar strain {y,,}  {D{} = [LiJ{En}

Constitutive eyn
:Su} = IAa;AlHEU}

Equilibrium eyn
[VUA]r{SM} = (0]

Compatibility egn
{V/.Al {En} - {Vm] : E,k } = {0}

1 . e
[f‘.,u] = -‘,“"}ZIL;-:;"K;-.][L:&II

where gradient operator: (95,1 = [

and fubric operator: fLin] = [

&8,
0
Sl

0

suUperscripts ¢ contact ¢
a: particle a.

—_
sk

-

0,

cml};'f
3.0
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